SXT Mirror Segment Development Will Zhang/GSFC Constellation-X /SXT William.W.Zhang@nasa.gov ## **The Basic Process and Axial Figure Metrology** Cluid Time¹¹² and a Time¹¹² and a Quid Time¹¹² and a TIFF (Uncompressed) decompressor are followed present of the picture. THE (Uncompressed) decompressor are followed present of the picture. The followed present of the picture. QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture October 14/15, 2004 ### **Summary of Work and Progress since Last FST** - Improved mirror fabrication facility environment for cleanliness - Resurfaced the interior of the oven - Enclosed the glass forming in clean tents - Started the process of understanding gravity and thermal distortion of the forming process - Finite element analysis (both mechanical and thermal) developed under contract with Swales Aerospace - Work suspended pending resumption of funding - Acquired and used for the first time forming mandrels that meet Con-X/SXT baseline requirement - Two whole-shell mandrels fabricated by Rodriguez Precision Optics and refigured by the Optical Engineering Branch of GSFC (Diameter 500mm) - Two segmented/slab mandrels fabricated/refigured by Zeiss Laser Optics, GMBH (Diameter 1600mm) - Formed substrates that arguably already meet SXT requirement without epoxy replication: 2.4" vs. 2.0" axial slope RMS requirement (2.4" includes metrology noise which can no longer be neglected) - Once replicated, these substrates/replicas are expected to exceed the requirement, and to be close to reach the SXT goal of 1.0" axial slope RMS October 14/15, 2004 FST–3 ### **Axial Figures of Two Recent Substrates** - Achievements: Axial slope height error: 60nm RMS (requirement 50nm) - Problems: - Several significant craters caused by dust particles sandwiched between the forming mandrel surface and the substrate, wreaking havoc to the quality of the substrate - Some incomplete forming or residual thermal stress causing the azimuthal edges to distort ### The Same Two Substrates in Spatial Frequency Domain - Low Frequency Regime (spatial period: 30 to 200mm): exceeding requirement - Mid Frequency Regime (spatial period: 5 to 30mm): not meeting requirement, currently dominating the total error; epoxy replication is expected to reduce these errors to well below the requirement - High Frequency Regime (spatial period: 1 to 5mm): meeting requirement, metrology noise being a large component of the error - Very High Frequency Regime(spatial period: 1mm and less): meeting requirement ### Comparison: 2003 (black) and 2004 (blue) - A factor of ~3 improvement in substrate quality from 2003 to 2004 - Latest substrates without replication can almost meet SXT baseline requirement October 14/15, 2004 # Demonstrated Effect of Epoxy Replication Using a Poor Substrate from 2003 - A replication with 5µm epoxy improves the figure by - A factor of ~3 in the high frequency band - A factor of ~5 in the mid frequency band - Nothing in the low frequency band ### **What to Expect for the Next Replication** - We have shown that 5µm or thinner layer of epoxy does not distort the replica figure - The recent substrate has an axial figure error on the order of 60nm RMS - Experience has shown that 5µm epoxy can totally mitigate the 60nm RMS error - When the recent substrates are replicated correctly (after a few practical logistical problems are resolved), we expect the final replicas to have an axial slope error close to ~1" RMS, corresponding to a ~4" (HPD, 2 reflections) assembly performance ### Technology Status, Problems, Solutions, and Prospects - It is all but certain that the current technology can meet, and most likely can exceed, the SXT baseline requirement: - 15" (HPD 2 reflections here and hereafter) at the observatory level - 12" at the individual telescope level - 10" at the mirror segment component level #### Current Problems and Solutions - Cleanliness of the substrate forming environment - Cleanliness of the replication mandrel coating environment - Cleanliness of the epoxy replication environment - Solutions: procurement of a clean oven, enclosing the replication mandrel coating process in a clean environment ### Prospects - In one year: - Fabricate segments meeting baseline requirement on a routine basis - Probe the pathway to meet the SXT goal of 3.5" (HPD, 2 reflections) - In two to three years: - Procure forming/replication mandrels that meet the SXT goal - Build up infrastructure that can fabricate and measure the 3.5" mirrors October 14/15, 2004 FST-9